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Gas absorption into a drop in the presence of an acoustic field
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Abstract

The present work considers acoustically enhanced gas absorption into a liquid drop accompanied by a
homogeneous first order chemical reaction.

The mass conservation equation was solved for the flow inside the drop induced by acoustic streaming
both analytically and numerically. Two cases were considered: An analytical solution was presented for the
case of high Peclet numbers, while the case of arbitrary Peclet numbers was solved numerically.

The high Peclet number case is applicable for high circulation rates and serves as an upper limit on the
rate of mass transfer into the drop. It also provides a check for the numerical solution.

The results indicate that the effect of the acoustic field on mass transfer is especially beneficial for absorp-
tion processes without chemical reaction, or with reactions of moderate rates. The enhancement for these
processes for Peclet numbers of 500–1000 was 3.3–3.5 as compared to absorption without an acoustic field.
For processes with fast chemical reactions the benefits of using an acoustic field are limited, with enhance-
ment factors in the range of 1.5–2.3.
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1. Introduction

Oscillatory flows are of increasing interest in the enhancement of heat and mass transfer. When
a sound wave is applied to a fluid, steady motion known as acoustic streaming may take place
under certain conditions. Consider a sphere or a cylinder immersed in the oscillating fluid, when
the amplitude of the oscillation is small as compared to the characteristic length of the sphere or
cylinder. Under such conditions a steady motion will take place around the body. The streaming
around the body is confined to what is known as an acoustic boundary layer, the thickness of
which is of the order of O(m0/x)

1/2.
Schlichting (1979) considered streaming flow around an oscillating cylinder. This work ex-

plained an observation made by Andrade (1931) regarding vortices generated by an oscillating
cylinder in a water tank. Lane (1956) and Raney et al. (1955) studied theoretically and experimen-
tally the acoustic streaming around a rigid sphere and cylinder, respectively. Theoretical studies
were also conducted by Riley (1966), Burdukov and Nakoryakov (1965a,b), Wang (1965), Stuart
(1966) and Lee and Wang (1988, 1989). A recent review published by Riley (1997) describes dif-
ferent types of acoustic streaming.

The effect of oscillating flow on heat and mass transfer was already acknowledged more than 60
years ago. Since then substantial research effort has been devoted to this topic.

Marthelli and Boelter (1939) reported that heat transfer from a vibrating cylinder is five times
higher than that from a stationary cylinder in free convection. Lemlich and Rao (1965) found a
fourfold increase in free convection heat transfer from vibrating wires as compared to non-vibrat-
ing ones. Baxi and Ramachandran (1969) studied the effect of vibration on natural and convective
heat transfer. While enhancement was observed in natural convection, it was practically non-exis-
tent under forced convection conditions. Mori et al. (1969) studied heat transfer from small
spheres at low Strouhal numbers, finding no effect on the heat transfer rate. Larsen and Jensen
(1978) studied experimentally the effect of flow pulsation on the evaporation rate from a sphere
at high Strouhal numbers with and without forced convection, reporting an up to 90% increase
in evaporation rate. Ha and Yavuzkurt (1993) performed a numerical investigation to assess
the effect of a high intensity acoustic field on heat and mass transfer from solid particles and drop-
lets. Nasiri and Van Moorhem (1996) studied the sublimation rate from solid spheres using low
frequency pulsation. Yarin et al. (1999) studied theoretically and experimentally the streaming
patterns of an acoustically levitated drop accounting for effects of compressibility and modifica-
tion of droplet shape due to acoustic pressure. From the streaming patterns evaporating rates
were calculated. The same theory was applied to estimate the sublimation rate from a solid sphere
(Yarin et al., 2000).

Although considerable effort has been invested in the study of heat and mass transfer in the
presence of acoustic fields, most of the works deal with the effect of acoustic streaming on heat
or mass transfer external to the bodies considered, and little work has been devoted to the effect
of internal flow, brought about by the external streaming motion on heat and mass transfer, where
the internal resistance to these processes is dominant. This situation has relevance in many indus-
trial processes such as scrubbing, absorption and waste gas purification.

The liquid inside the drop is driven by the gas flow near the drop surface and therefore affects
mass transfer inside the drop. Although, Yarin et al. (1999) concluded that internal flow has a
negligible effect on mass transfer dominated by external resistance, such as evaporation from a
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liquid drop, we will show that it cannot be neglected when the resistance to mass transfer is in the
dispersed phase, such as in the case of gas absorption into a liquid drop.

Another class of works deals with internal flows generated by acoustic waves (Vainshtein et al.,
1995; Larsen and Jensen, 1978). These works are characterized by the existence of a hydrody-
namic boundary layer near the surfaces. The thickness of this boundary layer is of the order of
Pe�1/2. Usually, in this kind of boundary layer problems one should consider for this region a sep-
arate slow timescale solution for the net diffusion across the streamlines. Examples of such prob-
lems are the flow around a solid sphere, dissolution or growth of spherical oscillating bubbles
(Fyrillas and Szeri, 1994), and diffusion in Rayleigh–Bennard cells and spatially periodic flows
(Young et al., 1989; Rosenbluth et al., 1987; Rhines and Young, 1983). Our problem is different
in the fact that in our case the velocity at the boundary is maximal, while in those cases it is either
minimal or zero. Hence, in our case there is no thin boundary layer near the gas–liquid interface,
where the velocity develops.

In the present work, we study the effect of internal circulation caused by the streaming flow out-
side the droplet on mass transfer into the droplet with or without chemical reaction. Analytical
and numerical solutions are presented, and practical conclusions are drawn.
2. Flow field in the presence of an acoustic field

We now present the governing equations for acoustical streaming near spherical drops and fur-
ther on, the equation for the induced internal flow inside the drop. In this section, we use argu-
ments similar to those in the work of Burdukov and Nakoryakov (1965b) for evaluating the
velocity outside the drop. The internal flow is calculated using similar assumptions to those of
Yarin et al. (1999).

We consider a spherical drop immersed in a fluid perturbed by an acoustic field, and make the
following assumptions:

1. The drop remains spherical.
2. Large Strouhal number, S,
S ¼ xa
B

� 1 ð1Þ
where B, x and a are respectively the velocity amplitude, fluctuation frequency and drop radius.
B ¼ A0

q0c0
ð2Þ
A0, q0 and c0 are, respectively, the sound pressure, continuous phase density and isentropic sound
velocity.
3. Large acoustic Reynolds number
Res ¼
xa2

m0
� 1 ð3Þ
where m0 is the continuous phase viscosity.
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Under these assumptions, a steady secondary flow will develop near the droplet surface, which
can be expressed as:
hui ¼ Cðx; yÞ þ uðxÞy þ bðxÞ ð4Þ

The first term in Eq. (4) is the velocity around a rigid sphere obtained by Burdukov and Nak-

oryakov (1965b). Note that C(x,y)y=0 = 0 implies that b(x) is the fluid velocity on the drop sur-
face. Moreover, as the fluid is stagnant far from the drop surface, we obtain that u(x) = 0.

To simplify the solution inside the drop we assume that the inertia terms are negligible as com-
pared to the viscous terms. This leads to the well-known creeping flow equation:
D4wi ¼ 0 ð5Þ

The solution of Eq. (5) is:
wi ¼ E
R3

a
� R5

a3

� �
sinðhÞ sinð2hÞ ð6Þ
where R and h are the radial and angular coordinates, respectively.
Matching velocities and shear stresses between the external solution of Eq. (4) and the internal

solution of Eq. (6) eliminates the constant E in Eq. (6) and bð~xÞ in Eq. (4).
wl ¼
9

160
ffiffiffi
2

p a2B
l0

li
S�1Re�

1
2

s

R
a

� �3

� R
a

� �5
" #

sinðhÞ sinð2hÞ ð7Þ
The induced internal flow is illustrated in Fig. 1.
0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

Fig. 1. Stream lines inside a drop in the presence of an acoustic field.
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A similar flow pattern exists when an immersed drop in a dielectric fluid is subjected to an elec-
tric field. This pattern was predicted and observed by Taylor (1966). A similar flow pattern was
also reported in the work of Stone et al. (1991). This work describes in terms of chaotic stream
lines the flow inside drops, which are immersed in a bounded steady Stokes flow.

Eq. (7) is used in the next section to solve the concentration profile inside the drop and the re-
lated mass transfer rate.
3. Mass transfer into a drop

3.1. Problem formulation

Acoustic pressure influences the internal flow, thus affecting the mass transfer rate into the
drop. Since the acoustic pressure does not appear explicitly in the momentum and mass conser-
vation equations, it is more convenient to use another characteristic parameter, namely the ampli-
tude velocity B. The characteristic velocity is related to the acoustic pressure as (Ha and
Yavuzkurt, 1993):
B ¼
ffiffiffi
2

p 10Lp�94=20

q0ðcRT 0Þ1=2
¼ A0

q0c0
ð8Þ
where Lp is the acoustic pressure in dB, R is the universal gas constant, and q0, T0 are the con-
tinuous phase density and temperature, respectively. Note that this characteristic velocity appears
in the solution for the stream line of Eq. (7).

The mass conservation equation and the boundary conditions for an axisymmetric drop with a
first order chemical reaction are:
oc
ot

þ tr
oc
oR

þ th
R

oc
oh

¼ D
o2c

oR2
þ 2

R
oc
oR

� �
þ 1

R2 sin h

o

oh
sin h

oc
oh

� �
þ krc

c ¼ 0 @ t ¼ 0;
oc
oh

¼ 0 @ h ¼ 0; p t > 0

oc
oR

¼ 0 @ R ¼ 0; t > 0; c ¼ c0 @ R ¼ a t > 0

ð9Þ
The velocity components tr, th are derived directly from the stream function of Eq. (7):
tr ¼
1

R2 sin h

owi

oh
¼ 2Z

R
a3

1� R
a

� �2
 !

ð3cos2h� 1Þ
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R sin h
owi

oR
¼ �Z

R
a3
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ð10Þ
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Eq. (9) in dimensionless form is:
oC
os

þ 1

2
Pe
eth
r
oC
oh

þ etr oC
or

� �
¼ o2C

or2
þ 2

r
oC
or

þ cot h
r2

oC
oh

þ 1

r2
o2C

oh2
þ DaC

C ¼ 0 @ s ¼ 0;
oC
oh

¼ 0 @ h ¼ 0; p=2

oC
or

¼ 0 @ r ¼ 0; C ¼ 1 @ r ¼ 1

C ¼ c� c0
c0

; s ¼ D
a2

t; r ¼ R
a
; Da ¼ kra2

D
; Pe ¼ Ba

D
; etr ¼ tr

B
; eth ¼ th

B

ð11Þ
Here r is the dimensionless radial coordinate; C and s, the dimensionless concentration and time,
respectively; and etr and eth, the dimensionless radial and circumferential components of velocity,
respectively. The process is also governed by two dimensionless groups: Da––the so-called
Damköhler number, which gives the ratio between the reaction and diffusion rates, and Pe––
the Peclet number, which provides a measure of the relative importance of mass transfer by acous-
tic convection and diffusion.

From Eq. (11), we may identify three cases:

Case 1: Pe = 0, which represents absorption by a stagnant drop, i.e., without an acoustic field.
This case has a well-known solution and we will use it to compare with it the absorption
enhancement caused by the acoustic field.

Case 2: Pe! 1. This case represents absorption with strong circulation caused by the acoustic
field. Here the circulation rate is faster than the solute diffusion rate into the drop. There-
fore, we can neglect the diffusion along the streamlines and assume that the solute con-
centration on a given streamline is constant. With this approximation, an analytical
solution is possible.

Case 3: Arbitrary Peclet number. Here, we cannot neglect the diffusion along the streamlines, and
consequently an analytical solution cannot be obtained. Here, a numerical solution is
obtained for several Peclet numbers and compared with the analytical solutions for a
stagnant drop (Pe = 0) and that with strong circulation, Pe !1.

3.2. Case 1––Absorption into a stagnant drop with and without chemical reaction

The mass transfer equation and the boundary conditions for this case are:
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oC
os

¼ o2C
or2

þ 2

r
oC
or

� �
þ DaC

C ¼ 1 @ s ¼ 0

oC
or

¼ 0 @ r ¼ 0; s > 0

C ¼ 0 @ r ¼ 1; s > 0

ð12Þ
The solution without chemical reaction is,
Cðr; sÞ ¼ 1� 2

r

X1
n¼1

ð�1Þnþ1

np
expð�n2p2sÞ sinðnprÞ ð13Þ
Danckwerts (1951) modified this solution to account for a first order chemical reaction by using
the following relation between the solution for the concentration without chemical reaction, C,
and the concentration with, eC with,
eCðr; tÞ ¼ Da

Z t

0

Ce�Da s dsþ Ce�Da s ð14Þ
3.3. Case 2––Absorption into a drop at high Peclet number

This case represents absorption with very strong circulation, allowing us to neglect the diffusion
along the streamlines and assume that the solute concentration on a given streamline is constant.

We solve this problem by rewriting the equation of mass conservation in a streamline curvilin-
ear coordinate system. Neglecting diffusion along streamlines, we transform the unsteady diffu-
sion–convection Eq. (11) into an unsteady diffusion equation using the curvilinear coordinate
system w–g (Levich, 1962; Kronig and Brink, 1950), where w is the streamline coordinate and
g is a coordinate orthogonal to w. We define w as:
w ¼ Ar3ð1� r2Þ sinðhÞ sinð2hÞ

r ¼ R
a
; A ¼ 7; 0 6 r 6 1; 0 6 w 6 1

ð15Þ
Note that w differs from the stream function of Eq. (7) in the multiplier A, which was set as
A = 7 to normalize w. We obtain the coordinate g using the orthogonality condition:
rg � rw ¼ 0

ow
or

og
or

þ 1

r2
ow
oh

og
oh

¼ 0
ð16Þ
which yields an expression for g
g ¼ r10

ð3� 5r2Þ2
ð3cos2h� 1Þ5 ð17Þ
Fig. 2 shows an infinitesimal volume element in the streamline coordinate system.



Fig. 2. Volume element in the w–g coordinate system.
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We now rewrite Eq. (11) using the simplifying assumption of constant solute concentration
along w,
oC
og

� �
w

¼ 0 ð18Þ
In the new w–g curvilinear coordinate system, the mass conservation equation reads,
GðwÞ oC
os

þ DaC
� �

¼ o

ow
oC
ow

F ðwÞ
� �

ð19Þ
where G(w) and F(w) are:
GðwÞ ¼
Z
g

1

hwhghu
dg; F ðwÞ ¼

Z
g

hw
hghu

dg ð20Þ
and hw, hg, and hu are the metric coefficients,
hw ¼jr � w j¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The functions G(w) and F(w), which were obtained by numerical integration of Eq. (20), are pre-
sented in Fig. 3.

To solve Eq. (19) we first consider the case of no chemical reaction and then with the help of the
transformation of Eq. (14) extend the solution to the case of diffusion with a first order chemical
reaction.

Eq. (19) for the case of no chemical reaction is:
GðwÞ oC
os

¼ o

ow
oC
ow

F ðwÞ
� �

ð24Þ
with initial and boundary conditions,
C ¼ 1; s ¼ 0

C ¼ 0; w ¼ 0

C ¼ finite; w ¼ 1
Solution for such problems is obtained by using asymptotic expansion methods, as described in
Wyllie (1995).

The solution of Eq. (24) is:
Cðw; sÞ ¼ 1�
X1
n¼1

EnWnðwÞ expð�knsÞ ffi 1� E1W1 expð�k1sÞ � E2W2 expð�k2sÞ ð25Þ
where wn and kn are the eigenfunctions and eigenvalues respectively, En is obtained from the initial
condition, and,
k1 ¼ 31:935; k2 ¼ 113:444

W1 ¼ 2:6855wþ 1:0779w2

W2 ¼ �10:9844wþ 15:4547w2

E1 ¼ 0:4799; E2 ¼ �0:2787

ð26Þ
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The solution for absorption with a chemical reaction is derived from Eq. (24) using the trans-
formation of Eq. (14), to yield,
eCðw; tÞ ¼ 1�
X1
n¼1

EnWnðwÞ
kn þ Da

½1þ ðkn þ Da� 1Þ expð�sðsn þ DaÞÞ� ð27Þ
The average solute concentration is given by:
Cavg ¼
1

V

Z Z Z
Cdsw dsgdsu ¼ 3

2

Z
w
CGðwÞdw ð28Þ
The solutions given in Eqs. (25) and (27) are valid when Pe !1. This is a limiting case, which
disregards the change in concentration along the streamlines, as indicated by Eq. (18). In practice,
this means that the rate of circulation is fast enough, such that the change in concentration along
the streamline due to crosswise mass diffusion toward it can be neglected.

Typically, problems of this kind are usually treated by dividing them into two domains, a thin
layer near the boundary and a core region. Examples may be problems that deal with internal
flows generated by acoustic waves (Vainshtein et al., 1995; Larsen and Jensen, 1978). These works
are characterized by the existence of a hydrodynamic boundary layer near the surface, the thick-
ness of this which is of the order of Pe�1/2. Usually, in that kind of boundary layer problems one
should consider a separate slow timescale solution for the net diffusion across the streamlines in-
side the boundary layer. Our problem is different in the fact that here the velocity at the boundary,
i.e., at the air–liquid interface is maximal, while in the internal-flow cases it is either minimal or
zero. Hence, in our case there is no thin boundary layer near the gas–liquid interface, where the
velocity develops, and one may treat it as a single domain problem.

We now determinate the quantitative criteria for the validity of the high Peclet solution. The
high Peclet approximation holds when the circulation time, tc, is much smaller than the charac-
teristic diffusion time, td,
tc
td
< 1 ð29Þ
The circulation time is defined as:
tc ¼
I

dsg
hgt

¼
I

dg
hgt

; w ¼ constant

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2r þ t2hÞ

q
¼ 2jD

R
a3

; j ¼ 9

160
ffiffiffi
2

p Ba2
l0

ll
S�1Re

1
2
s

ð30Þ
Substituting hg from Eq. (22) yields after integration, an expression for the circulation time tc
along a streamline w.
tc ¼
A
j
GðwÞ ¼ 160

ffiffiffi
2

p

9

a
B

� � ll

l0

� �
S Re�

1
2

s GðwÞ ð31Þ
This result indicates that the function G(w) has the physical meaning of circulation time along a
streamline. Moreover, Eq. (31) relates the circulation time tc, to the acoustic field parameters, fluid
characteristics and droplet size as,
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tc /
ll

l0

S Re�
1
2

s ðA0a2Þ�1 ð32Þ
The characteristic diffusion times, with and without reaction are, respectively (Danckwerts,
1951),
~td ¼
0:056a2=D
1þ Da

16

ð33Þ
a2

td ¼ 0:056

D
ð34Þ
the time ratio of the times with and without reaction is:
~td
td
¼ 1þ Da

16

� ��1

ð35Þ
Eq. (35) indicates that this ratio decreases as the Da increases.
The validity condition for the high Peclet approximation, Eq. (29), can now be rewritten in

terms of G(w) as,
GðwÞ < 0:0022PeRe
1
2
sS

�1 l0

ll
1þ Da

16

� ��1

ð36Þ
While in the absence of reaction Da = 0 and the approximation hold when:
GðwÞ < 0:0022PeRe
1
2
sS

�1 l0

ll
ð37Þ
We see that criteria for the case of no reaction differ from the criteria with, only by the term
containing the Damkoeler number, Da, which represents the intensity of the reaction.

Note from Fig. 3, that the function G(w) diverges close to the drop surface, w! 0. Thus, there
will always be a layer, adjacent to the drop surface, for which the high Peclet assumption is not
valid.

As an illustration consider gas absorption from ambient air into a 1-mm water droplet under
the influence of a 90-dB, 5kHz acoustic field. Here, the acoustic field parameters are:
Pe = 350,000, Res = 523 and S = 225. Substitution of these parameters into Eq. (37) indicates
that the approximation holds when G(w) < 2.5, which with the help of Fig. 3 yields w > 0.01.
The region of w < 0.01 represents a thin layer near the droplet surface. Adding a first order chem-
ical reaction, kr = 0.02s�1, to that case we find from Eq. (36) and Fig. 3 that now the approxima-
tion holds when G(w) < 1.7 and w > 0.02. As seen, here the thickness of the layer in which the
approximation does not hold is considerably increased. Hence, we may conclude that the high
Peclet approximation holds for cases of no reaction or very slow reaction rates, while the validity
of the results for high reaction rates is limited. This statement may be formulated in terms of the
relative magnitudes of the Peclet and Damköhler numbers. The solution presented above holds
for the case Pe � Da, and it does not hold for Pe 6 Da. For cases of arbitrary Peclet numbers,
or when Pe � Da and Pe� Da one has to solve the complete Eq. (11), as outlined below. How-
ever, for the case Pe � Da the process is controlled by molecular diffusion and chemical reaction,
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and the effect of convection is much less important. That case is characterized by a thin concen-
tration boundary layer of the order O(Da�1/2).

3.4. Case 3––Absorption into a drop with an arbitrary Peclet number

In this section we present a numerical scheme for the solution of Eq. (11), which describes
acoustically enhanced mass transfer into a droplet accompanied by a homogeneous first order
chemical reaction.

The time-dependent concentration profile is calculated using an explicit forward finite-differ-
ence method in a polar coordinate system. In this method, the known solute concentration profile
at time s is used to calculate the new concentration profile at time s + Ds. Hence, the finite-differ-
ence equivalent of Eq. (11) is:
Ckþ1
i;j ¼ Ck

i;j 1� 2Ds

DR2
� 2Ds

R2Dh2
� krDs

� �
þ Ck

iþ1;j

Ds

DR2
þ Ds
RDR

� Pe�trDs
4DR

� �
þ Ck

i�1;j

Ds

DR2
� Ds
RDR

þ Pe�trDs
4DR

� �
Ck

i;jþ1

cot h

2R2

Ds
Dh

þ Ds

R2Dh2
� Pe�thDs

4RDh

� �
þ Ck

i;j�1 � cot h

2R2

Ds
Dh

þ Ds

R2Dh2
þ Pe�thDs

4RDh

� �
ð38Þ
The initial and boundary conditions are:
Cn;j ¼ 1 @ R ¼ 1; C1;j ¼
1

2
ðC2;1 þ C2;mÞ @ R ¼ 0

Ci;1 ¼ Ci;2 @ h ¼ 0 Ci;m ¼ Ci;m�1 @ h ¼ p
2

ð39Þ
where i and j are indices defining the angular and radial increments, respectively. The solution do-
main is a quarter droplet with meshing of 25 radial increments and 22 angular increments and a
time step of 1 · 10�5. Because it was difficult to obtain a stable solution for Peclet numbers greater
than 1000, it was necessary to refine the grid for these cases to 40 · 45 and to reduce the time
increment to 1 · 10�6. We did not notice any influence of the chemical reaction on the stability
of the solution.

The mber, Pe*, used in our formulation is a modified Peclet number. It accounts for the oscil-
lation frequency, x, and velocity amplitude, B, which is related to the acoustic pressure A0,
through Eq. (8). This Peclet number is defined as:
Pe� ¼ 0:07955
l0

li
Re�

1
2

s S�1 Pe

Pe ¼ Ba
D

ð40Þ
The sound pressure is usually measured in dB. Fig. 4 presents how the sound pressure in dB is
related to the modified Peclet number, at different frequencies.
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4. Results

The solution of Eq. (11) yields time dependent concentration profiles. The results are expressed
in terms of the following dimensionless variables.

• Average Sherwood number, which represents the instantaneous dimensionless mass transfer
rate defined as:
Shavg ¼
Z p=2

0

Sh � sinðhÞdh ð41Þ
where Sh, is the local Sherwood number defined as:
Sh ¼ 2
oC
oR

����
R¼1

ð42Þ
• Average solute concentration
Cavg ¼
1

V

Z
CdV ð43Þ
• Time average Sherwood number
hShi ¼ 1

s

Z
Shds ð44Þ
The next two sections present the results for absorption with and without chemical reaction for
the following range of parameters:

• Modified Peclet numbers of Pe* = 0, 10, 100, 500, 1000, 1.
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• Dimensionless time, s = 0–0.1.
• Dimensionless reaction rates, Da = 0, 50, 250.

4.1. Mass transfer without chemical reaction

Fig. 5 presents lines of equal solute concentration inside the droplet after s = 0.02.
Note that for a low intensity acoustic field, which corresponds to a small Peclet number, the

lines of equal concentration are concentric and similar to the stagnant drop case. On the other
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hand, for high Peclet numbers the lines of equal concentration coincide with the flow streamlines,
see Fig. 1, as found in the high Peclet solution.

Fig. 6 shows the average solute concentration for various Peclet numbers.
For small timescale processes, say s < 0.002, the diffusion is the dominant mechanism. Thus,

the amount of solute does not depend on the Peclet number. For this region it is practically safe
to use the simple analytical solution or the Higbie penetration model (Danckwerts, 1970).

Likewise, we see that there is good agreement between the high Peclet solution and the finite-
difference one for longer times. The discrepancy between the two models at short times is because
the high Peclet analytical solution assumes instantaneous solute distribution along the stream-
lines. For short times this assumption breaks down. On the other hand, in the finite difference
solution, the solute distribution time is accounted for.
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For large times, say s > 0.08 the analytical solution coincides with the numerical results when
Pe* > 100.

The changes of the Sherwood number are shown in Fig. 7.
We see that the solution for the Sherwood number from the finite difference scheme tends to

fluctuate about the high Peclet solution. Now we assess the relation between the fluctuation fre-
quency of the Sherwood number and the circulation frequency. The timings of these fluctuations
correspond to the time required for the circulating liquid to complete a cycle. Fig. 8 presents the
time it takes the liquid to complete a cycle for a streamline close to the drop surface, w = 0.975,
for different Peclet numbers.

Thus, we see that for Pe* = 500 the cycle time is 0.007, which corresponds to the appearance of
the fluctuation in the Sherwood number in Fig. 7. Watada et al. (1970) predicted similar phenom-
ena of fluctuation in the mass transfer rate in a falling drop.

4.2. Mass transfer with chemical reaction

Fig. 9 presents lines of equal solute concentration inside the drop with and without chemical
reaction.

Comparing the shapes of the equal-concentration lines to those of the streamlines in Fig. 1, we
see that the deviation of the equal concentration lines from the streamlines is more pronounced
when a chemical reaction exists. This can be explained by the dominance of the reaction over con-
vection for short times.

Fig. 10 is similar to Fig. 9, but for longer times. Here, we note that after longer times, the lines
of equal concentration without chemical reaction coincide with the streamlines, while with reac-
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tion they do not. Consequently, while for absorption without reaction, the use of the high Peclet
approximation is justified, for absorption with fast chemical reaction it is not.

We now examine the dimensionless parameters characterizing mass transfer into the drop.
When mass transfer is accompanied by a first order chemical reaction, the average concentration
inside the drop approaches rapidly a constant value. Figs. 11 and 12 present average solute con-
centrations for Peclet numbers of 100 and 500, respectively.

We see that for a given reaction rate, circulation leads to a significantly higher amount of solute
in the drop. Increasing the Peclet number from 100 to 500, almost doubles the amount of ab-
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sorbed gas. Comparing Figs. 11 and 12 we note that for higher circulation rates, i.e. higher Peclet
numbers, the approach to constant average concentration is faster.

The dimensionless mass transfer rates given as a Sherwood numbers for Peclet numbers of 100
and 500 are shown in Figs. 13 and 14.

Here again, we may conclude that as the Peclet number increases; so does the instantaneous
mass transfer rate.

4.3. Overall mass transfer rate

To gain an indication how acoustics affects the mass transfer process, we now present in Fig. 15
the time average dimensionless mass transfer rate as a function of the modified Peclet number.

We see that for the case of no chemical reaction, Da = 0, the high Peclet approximation results
practically coincide with the numerical simulation results for Pe* > 600. For the case with chem-
ical reaction, the high Peclet solution slightly overestimates the absorption rate. This is due to the
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assumption that the circulation time is much shorter than the diffusion time. The higher the reac-
tion rate the less applicable is the high Peclet solution. Hence, for fast chemical reactions the
numerical solution should be used.

In the presence of an acoustic field, the mass transfer rate is enhanced as compared to absorp-
tion into a stagnant drop. The enhancement is more evident at low reaction rates. To illustrate
this, we present in Fig. 16 the results in the form of an enhancement factor, / which shows the
mass transfer enhancement over that into a stagnant drop.

For example for the case of Pe* = 500, which corresponds to a sound pressure of 100dB and
frequency of 1000Hz, the mass transfer rate is 3.3 times higher than that into a stagnant drop
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without a chemical reaction. For these acoustic conditions with a high rate chemical reaction, the
enhancement is only 1.37.

Some experimental works, Larsen and Jensen (1978), correlated mass transfer data in the pres-
ence of an acoustic field in terms of exponential relationship between the enhancement factor /
and the strength of the acoustic field, as given by the modified Peclet number. In this study the
enhancement factor / relates to the modified Peclet number as,
/ / aðPe�Þn for 100 < Pe� < 1000

0:1 < n < 0:2
ð45Þ
where the value of exponent n depends on the chemical reaction rate and it decreases as the reac-
tion rate increases.

Rewriting this relation using acoustic field parameters A0 and x we get,
/ / A2
0ffiffiffiffi
x

p
� �n

ð46Þ
Eq. (46) provides a convenient tool for estimating the enhancement of mass transfer by an
acoustic field, of intensity A0 and frequency x, as compared to mass transfer without it.
5. Closure

The present work considers acoustically enhanced mass transfer into a liquid drop. Comparing
mass transfer rates obtained in the present work, with those of the stagnant drop, we conclude:
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1. The effect of acoustic enhancement is important for Pe* > 100, especially for long contact
times.

2. For short timescale processes, say s < 0.002, diffusion controls the mass transfer rate, while
convection effects due to acoustic streaming are negligible. Hence, the solute distribution
inside the drop is similar to that of a stagnant drop. Here, the familiar models used to
describe mass transfer into a stagnant drop can be used.

3. For longer times, say s > 0.08 and in the absence of chemical reaction, the solution obtained
from the high Peclet approximation model may be used when Pe* > 600. For high rate
chemical reactions, the validity of the approximation should be carefully assessed using
the criteria given in Eq. (36). As shown, high reaction rates reduce the characteristic diffusion
time. Consequently, the assumption of a short circulation time is not valid anymore.

4. For cases of intermediate time scales and high reaction rates the finite difference solution has
to be used to describe mass transfer.

5. Increasing the modified Peclet number is beneficial for enhancing mass transfer up to
Pe* = 500 without chemical reaction and Pe* = 1000 with. Above these values, no addi-
tional enhancement was observed.

6. The present work adopted a scheme of single gas absorption into liquid drops accompanied
by an irreversible first order reaction. In practice, various industrial processes may involve
simultaneous absorption of several gases into the liquid phase. In cases where there is a large
dissimilarity between the reaction rates, kr, of the gases, applying an acoustic field may rep-
resent an efficient technique to improve the absorption rate. To demonstrate this, consider
the sweetening process of sour natural gas, where CO2 and H2S are absorbed into a strong
alkaline solution. Here the H2S absorption is the limiting step of the process, since
DaCO2

� DaH2S (Astarita, 1967). Implementing the results of the present work, we may assert
that the absorption rate of H2S, which is characterized by a small Damköhler number, could
be improved by applying an acoustic field, while the absorption of CO2 is not significantly
affected (large Damköhler number). Consequently, absorption in the presence of an acoustic
field would require a lower contact area as compared to absorption without it.

7. Enhancement of mass transfer into drops by applying an acoustic field is especially attractive
for cases without chemical reaction, and should be exploited as a viable industrial process.
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